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Figure 1. Recording ongoing 
behavior and neural dynamics in 
freely-moving mice. A. We 
recorded breathing with a 
thermistor (McAfee et al, 2016; 
Findley et al, 2021), neural activity 
with silicon probes (Neuronexus 16 
channel and Diagnostic Biochips 
64 channel), and video with a 
Blackfly camera (100 fps). B. (Top) 
To analyze local field potentials, 
we filtered and downsampled 
neurophysiological signals to 1 
kHz. Signals from two electrodes 
are overlaid. (Bottom) Thermistor 
signals are also downsampled and 
smoothed, and we detected 
inhalation onset and offset times 
using a peak detection algorithm. 
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Abstract
Odors carry useful navigational and episodic information, but most of the chemical 
world cannot be accessed without actively sampling the environment. To optimally 
orient by olfactory information, the brain must unify odor-driven activity with 
representations of self-movement and context. Studies in other sensory modalities 
demonstrate that contextual signals are common in primary sensory areas, and it 
has long been known that olfactory bulb (OB) local field potentials (LFP) are coupled 
with behavior. Our lab has found that individual olfactory bulb neurons track the 
long-timescale rhythmic structure of breathing, in the absence of experimenter 
applied stimuli or tasks. To better understand the coupled rhythms of breath and OB 
population activity dynamics, we analyzed local field potentials. During free 
movement, respiration is rhythmically organized into discrete states lasting minutes, 
whereas these states are not apparent during head fixation. In the OB, low 
frequency LFP oscillations correlate with sniff frequency and LFP waveforms in 
multiple frequency bands are aligned to inhalation. Further, LFP amplitudes in 
various frequency bands are associated with sniff frequency. Thus, OB LFP tracks 
information about timing and frequency of the respiratory cycle, and the amplitude 
may encode behavioral state. We propose that these contextual signals, particularly 
those dependent on active sampling, facilitate the incorporation of olfactory 
information into cognitive maps of self and environment.

Figure 2 Analysis of sniff frequencies between head fixed and freely moving mice explains 
variation in sniffing behavior and informs behavioral/neural state modeling. A) Sniff 
frequency histograms for four mice in freely moving and head fixed conditions. Overlayed log-
normal mixture distribution fitting. B) Error as function of model complexity. C) Optimal complexity 
supports three state model (Satopaa et al, 2011).

Figure 4 Aligning high pass filtered (24Hz) LFP epochs to inhalation times reveals 
alignment, and reduction in head fixation. A) We aligned, pooled, and z-scored high pass 
filtered LFPs as in Figure 3 B & C) demonstrate LFP beta frequencies, calculated from peak-to-
peak times, are aligned but uncorrelated with sniff frequency. D) Positive correlation between 
sniff frequency and high-frequency power E) Sniff-aligned high-frequency power is reduced 
during head fixation.

Figure 8 Spectral Analysis reveals coherence between LFP and sniff signal (after Rojas-
Labano et al, 2014). Spectrograms were computed using Thompson’s multitaper method using 
five tapers in 4s windows sliding in 400ms increments. Black scatter overlay represents 
instantaneous sniff frequency calculated from peak times. Color bar shows head fixation (red) 
and free moving (blue). Example session is shown Top) Power spectral density (PSD) of LFP. 
Middle) PSD of thermistor signal. Bottom) Spectral coherence between LFP and thermistor 
signals

Figure 3 Aligning low pass filtered (24Hz) LFP epochs to inhalation times in head fixation 
and free moving conditions reveals linear correlations and neural event latencies. A) We 
aligned LFPs to inhalation times and pooled across breaths in 1 Hz bins. Amplitudes are 
expressed as z-scores in standard deviations of a null distribution formed from circular shifts of 
inhalation times relative to LFP B & C) demonstrate that LFP frequencies, calculated from peak-
to-peak times, correlate with sniff frequency. C & D) Show LFP amplitude negatively correlated 
with sniff frequency.

• Sniff-centric visualization of LFPs provides a complementary perspective for 
understanding population dynamics

• High-frequency LFP components track inhalation time, maintain constant timing 
across breath frequencies

• LFPs may track long-timescale breathing rhythms less than unit activity
• Analyze the relationship between single unit activity and LFP phase (using the Hilbert 

transform and aligning signals bidirectionally to various peaks).
• Further explore spectral analysis using wavelet transforms to compare LFP frequency, 

power, and phase with respiration
• Understand the relationship between LFP frequency bands not aligned with inhalation times 

(gamma), respiration and behavioral HMM state.
• Predict head fixation, free moving, and behavioral HMM state from population activity using 

binary classification, k means clustering, and neural networks

Sniff-aligned LFPs in head-fixed and freely-moving

Ongoing behavior and neural dynamics

Multimodal distributions of sniff frequencies

Long-timescale rhythms in freely moving mice

Behavioral and neural states

Figure 7 Sniff-centric visualization suggests that LFP does not differ across behavioral 
states Low-pass (Left) and High-pass (Right) filtered sniff-aligned LFP separated by HMM 
states.
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Figure 6 Olfactory bulb population dynamics track breathing rhythms and behavioral states. 
Top) Sniff frequency time series colored by Hidden Markov Model state identity. Middle) 
Single unit activity in 10s windows. Bottom) Cosine distance matrix representing population 
dynamics similarity across the session.
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Figure 5 Autocorrelation demonstrates long timescale structure in sniffing behavior 
which is absent in head fixation. A) We calculated autocorrelation values of the sniff 
frequency time-series. Each row indicates one session from one mouse. B) To quantify 
timescales, we used the time constant of an exponential fit to the autocorrelation function.
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