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Abstract

Odors carry useful navigational and episodic information, but most of the chemical
world cannot be accessed without actively sampling the environment. To optimally
orient by olfactory information, the brain must unify odor-driven activity with
representations of self-movement and context. Studies in other sensory modalities
demonstrate that contextual signals are common in primary sensory areas, and it
has long been known that olfactory bulb (OB) local field potentials (LFP) are coupled
with behavior. Our lab has found that individual olfactory bulb neurons track the
long-timescale rhythmic structure of breathing, in the absence of experimenter
applied stimuli or tasks. To better understand the coupled rhythms of breath and OB
population activity dynamics, we analyzed local field potentials. During free
movement, respiration is rhythmically organized into discrete states lasting minutes,
whereas these states are not apparent during head fixation. In the OB, low
frequency LFP oscillations correlate with sniff frequency and LFP waveforms in
multiple frequency bands are aligned to inhalation. Further, LFP amplitudes in
various frequency bands are associated with sniff frequency. Thus, OB LFP tracks
information about timing and frequency of the respiratory cycle, and the amplitude
may encode behavioral state. We propose that these contextual signals, particularly
those dependent on active sampling, facilitate the incorporation of olfactory
information into cognitive maps of self and environment.
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Figure 1. Recording ongoing
behavior and neural dynamics in
freely-moving mice. A. We
recorded breathing with a
thermistor (McAfee et al, 2016;
Findley et al, 2021), neural activity
with silicon probes (Neuronexus 16
channel and Diagnostic Biochips
64 channel), and video with a
Blackfly camera (100 fps). B. (Top)
To analyze local field potentials,

B we filtered and downsampled
neurophysiological signals to 1
kHz. Signals from two electrodes
are overlaid. (Bottom) Thermistor
signals are also downsampled and
smoothed, and we detected
inhalation onset and offset times
using a peak detection algorithm.
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Sniff-aligned LFPs in head-fixed and freely-moving
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Figure 3 Aligning low pass filtered (24Hz) LFP epochs to inhalation times in head fixation
and free moving conditions reveals linear correlations and neural event latencies. A) We
aligned LFPs to inhalation times and pooled across breaths in 1 Hz bins. Amplitudes are
expressed as z-scores in standard deviations of a null distribution formed from circular shifts of
inhalation times relative to LFP B & C) demonstrate that LFP frequencies, calculated from peak-
to-peak times, correlate with sniff frequency. C & D) Show LFP amplitude negatively correlated
with sniff frequency.
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Figure 2 Analysis of sniff frequencies between head fixed and freely moving mice explains
variation in sniffing behavior and informs behavioral/neural state modeling. A) Sniff
frequency histograms for four mice in freely moving and head fixed conditions. Overlayed log-
normal mixture distribution fitting. B) Error as function of model complexity. C) Optimal complexity
supports three state model (Satopaa et al, 2011).
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Figure 4 Aligning high pass filtered (24Hz) LFP epochs to inhalation times reveals
alignment, and reduction in head fixation. A) We aligned, pooled, and z-scored high pass
filtered LFPs as in Figure 3 B & C) demonstrate LFP beta frequencies, calculated from peak-to-
peak times, are aligned but uncorrelated with sniff frequency. D) Positive correlation between
sniff frequency and high-frequency power E) Sniff-aligned high-frequency power is reduced

during head fixation.

Long-timescale rhythms in freely moving mice
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Figure 5 Autocorrelation demonstrates long timescale structure in sniffing behavior
which is absent in head fixation. A) We calculated autocorrelation values of the sniff
frequency time-series. Each row indicates one session from one mouse. B) To quantify
timescales, we used the time constant of an exponential fit to the autocorrelation function.

Behavioral and neural states
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Figure 6 Olfactory bulb population dynamics track breathing rhythms and behavioral states.
Top) Sniff frequency time series colored by Hidden Markov Model state identity. Middle)
Single unit activity in 10s windows. Bottom) Cosine distance matrix representing population
dynamics similarity across the session.
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Olfactory bulb local field potentials track breathing rhythms at multiple time scales

Figure 7 Sniff-centric visualization suggests that LFP does not differ across behavioral
states Low-pass (Left) and High-pass (Right) filtered sniff-aligned LFP separated by HMM

states.

Spectral analysis

Head-fixed

Head-fixed

Freely-moving

LFP
15

\‘\ I ‘ I
W
ﬁul,u “ IMM “

l

Frequency (Hz)

Time (minutes)

Figure 8 Spectral Analysis reveals coherence between LFP and sniff signal (after Rojas-
Labano et al, 2014). Spectrograms were computed using Thompson’s multitaper method using
five tapers in 4s windows sliding in 400ms increments. Black scatter overlay represents
instantaneous sniff frequency calculated from peak times. Color bar shows head fixation (red)
and free moving (blue). Example session is shown Top) Power spectral density (PSD) of LFP.

Middle) PSD of thermistor signal. Bottom) Spectral coherence between LFP and thermistor
signals

Preliminary conclusions and future directions

» Sniff-centric visualization of LFPs provides a complementary perspective for
understanding population dynamics

« High-frequency LFP components track inhalation time, maintain constant timing
across breath frequencies

 LFPs may track long-timescale breathing rhythms less than unit activity

» Analyze the relationship between single unit activity and LFP phase (using the Hilbert
transform and aligning signals bidirectionally to various peaks).

» Further explore spectral analysis using wavelet transforms to compare LFP frequency,
power, and phase with respiration

« Understand the relationship between LFP frequency bands not aligned with inhalation times
(gamma), respiration and behavioral HMM state.

« Predict head fixation, free moving, and behavioral HMM state from population activity using
binary classification, k means clustering, and neural networks
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