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Abstract

Odors convey useful navigational and episodic information, yet much
of the chemical world remains inaccessible without active sampling
through sniffing. To effectively interpret olfactory cues, the brain must
unify odor-driven activity with respiratory cycles, making accurate
respiratory measurements critical in understanding olfactory bulb
(OB) dynamics. Previous studies have shown that behavioral signals
are often present in primary sensory areas, and OB local field
potentials (LFPs) have long been known to couple with respiration.
Here we investigated whether OB LFPs can reliably recover the
precise timing and frequency of respiration. Our results indicate that
OB LFPs across multiple frequency bands align with respiratory
cycles. Using time and frequency domain methods, we show that 2-
12 Hz LFP oscillations effectively track respiratory frequency.
However, a monotonic relationship between LFP-respiratory delay
and sniffing frequency, which varies across animals, renders the
recovery of precise respiratory events challenging. This work
underscores the complex and individualized relationship between
rodent respiration and OB LFPs, contributing to our understanding of
how respiratory signals are represented in the OB.
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Figure 1: Single neurons track breathing rhythms. A. Spike raster of four single
units simultaneously recorded with dots to indicate spike times relative to inhalation.
B. Sniff field plots from the same four units reveals latency and sniff frequency
tuning in the OB.
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Figure 2: Depiction of
the experimental set
up and data acquisition
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Figure 3: Local field potentials and respiration appear aligned in time and frequency.

Spectral analysis
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Figure 4: Spectral Analysis reveals coherence between LFPs and respiration. A)
Spectrograms computed in 4s windows sliding in 400ms increments. Black scatter
overlay represents sniff frequency. Top & Middle) Power spectral density. Bottom)
Coherence. B) sniff frequency distribution. C) Coherence between LFPs and
respiration as standard deviations from a null distribution. Dotted line represents
significance threshold. Color shows head fixation in red and free movement in blue.

Time-domain visualizations
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Figure 5: Time-domain
visualizations reveals
OB LFPs in multiple
frequency bands are
aligned to inhalation.
Heatmaps show
inhalation aligned LFP
epochs stacked in the
y-direction according to
instantaneous sniffing
frequency. Each row
represents an LFP
epoch with color to
represents the
amplitude of the unit
variance scaled epochs
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Figure 6: Averaging inhalation aligned LFP epochs within sniff frequency bins
timing relati ips between LFPs and respiration. Unfiltered LFPs
are linearly correlated with respiration by cycle length, and there is a monotonic
relationship between LFP-respiratory delay and respiratory cycle length. Theta and
Gamma Envelope oscillations show the similar time-domain characteristics as raw
LFPs with respect to r Beta Band aligned to inhalation have a
cycle length and LFP-respiratory delay that is invariant to respiratory cycle length.
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Figure 7: LFP-respiratory delay is not constant across sessions or mice.

Inferring sniffing from LFPs
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3 Figure 8: Respiratory frequency
in sliding windows can be
recovered from 2 — 12Hz LFPs.
Time domain methods takes the
mean reciprocal of inter-peak-
intervals. Frequency domain
methods finds the peak in the
power spectrum.
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Figure 9: Heatmap shows the distribution of true vs predicted respiratory
frequencies in 4 second sliding windows. 2-dimensional histogram was created with
50 bins.

Discussion

Olfactory bulb local field potentials can be used to estimate the
respiratory frequency of head fixed and freely moving mice

Variable LFP-respiratory delay makes recovering respiratory
events challenging.

Peak finding in filtered LFPs leads to higher accuracy compared
with powerful spectral estimates.

LFP-respiratory description in rats (Kay et al., 2006) replicated
here in mice
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